您好、欢迎来到现金彩票网!
当前位置:刘伯温高手心水论坛1 > 推理过程 >

欧拉公式的证明_欧拉公式推导过程

发布时间:2019-05-21 16:46 来源:未知 编辑:admin

  在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数,则 R+ V- E= 2,这就是欧拉定理,它于1640年由Descartes首先给出证明 ,后来 Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理。

  这三个公式分别为其省略余项的麦克劳林公式,其中麦克劳林公式为泰勒公式的一种特殊形式,在

  这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率;两个单位:虚数单位i和自然数的单位1;以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”。

  尝欧拉公式:对于任意多面体(即各面都是平面多边形并且没有洞的立体),假 设F,E和V分别表示面,棱(或边),角(或顶)的个数,那么F-E+V=2.试一下用拓朴学方法证明关于多面体的面、棱、顶点数的欧拉公式。

  (2)去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。假设F,E和V分别表示这个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F-E+V=1.

  (3)对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。每引进一条对角线,F和E各增加1,而V却不变,所以F-E+V不变。因此当完全分割成三角形的时候,F-E+V的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。

  (4)如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC.这样F和E各减去1而V不变,所以F-E+V也没有变。

  (5)如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF.这样F减去1,E减去2,V减去1,因此F-E+V仍没有变。

  (7)因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。

  (8)如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1个三角形,3个边和2个顶点。因此F-E+V仍然没有变。

http://ivansolano.com/tuiliguocheng/16.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有